
My favorite programming languages

and three others

Douglas Creager

@dcreager

Craft Conf

June 2, 2022 – Budapest

 Introduce myself. Doug Creager, Semantic Code team at GitHub. Part of the "Code Productivity" group. Code Nav, Code Search, Vulnerability Analysis, etc.

 Want these features to be available for _everyone_. That means that we're exposed to all of the programming languages that are hosted on GitHub. Which, if you think about it, is basically the same as "all of the programming languages in the world". So we have an interesting, very wide, perspective on languages, which I hope to share with you today.

https://dcreager.net/

 We often like to compare programming languages with spoken languages, so I want to start with a famous myth from the Old Testament. This is a painting from the late 1300s, depicting the Tower of Babel. If you're not familiar with this myth, the Tower of Babel is meant to explain why people speak different languages. The story goes that after the Great Flood of Noah, the human world was united as a single people who spoke the same language. They were so proud of themselves and their accomplishments that they decided to build a tower tall enough to reach the heavens. And is often the case in the Old Testament, this is a story of God punishing humanity for its hubris. In this case, he sundered the people, spreading them to the corners of the Earth, and causing them to start speaking many mutually unintelligible languages.

 Now, how does this relate to the history of computing and of programming languages? It is, admittedly, not a perfect analogy. I can't claim that there was any _single_ programming language that the world's programmers all used in the "prehistory" of computing. In fact, starting in the 1940s and 50s, there were several groups simultaneously trying to build human-readable programming languages on top of machine code and assembly.

 But we _can_ say that there are a small handful of languages, like Fortran and Cobol, that we consider to _share_ the crown of first.

 How else is this analogy strained? Well, programmers are certainly guilty of hubris - but I'm not going to claim that divine retribution sundered the world of programmers in the 1950s and 1960s. Nevertheless, the end result is the same:

 Today, there is a true multitude of programming languages. This wall of logos might seem like a lot, but it's actually only a small sample of the languages that exist today. GitHub maintains an open-source package called linguist, which is a crowd-sourced list of all of the languages that we're aware of - and it currently contains more than 500 entries!

 As an aside, just throwing these logos up here has probably nerd-sniped several of you, so...

How many can

you identify?

 let's go ahead and play a game of Pyramid! There are 35 programming language logos on the screen. Dick Clark wants to know how many of them you recognize! Just a competition with yourself, it's okay if there many that you aren't familiar with.

 Now, for me, the most interesting part of our Tower of Babel analogy is the "mutual unintelligibility" part. Like spoken languages, there are _families_ of programming languages, where languages within a family are similar enough that familiarity with one means that you're likely to understand at least the basics of another. Whereas in another family, the very concepts of programming are so different that it can be almost impossible to understand how those languages could possibly work!

 I would claim that most of us these days are really only familiar with one programming language and its ecosystem. We're _aware_ that other programming languages exist, but we don't really take the time to explore other languages to learn where the similarities and differences are. (And to be clear, that's perfectly okay! We all have a limited number of hours in the day. Time is the most finite resource. Learning other languages might genuinely not be the best use of your time.)

 But there is a multitude, and it's one worth exploring. So for the next 20 minutes or so, we're going to explore the multitude together. My hope is that regardless of which language you're most fluent in, you'll see something new that makes you think about programming differently. I firmly believe that knowing about other programming styles and paradigms can make you a more effective developer.

 And also, to clarify, I'm going to be relentlessly positive! This is absolutely not a sermon about the One True Programming Style that everyone should switch over to. I'm not going to make any value judgments regarding static or dynamic typing, for instance. For those of you following along in the chat room or at home afterwards, please stay positive too!

RepetitionRepetition

 To get our feet wet, we're going to start by looking at some very high-level patterns that show up time and again. Our first pattern is repetition: What facilities do our programming languages give us for performing the same work over and over?

Fibonacci numbers

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

 We'll use a pretty simple example to start with: computing the Fibonacci numbers. If you're not familiar with this sequence, the first Fibonacci numbers are 0 and 1. Each subsequent number is the sum of the previous two.

Loops

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

func fib(x int) int {
a := 0
b := 1

for i := 0; i < x; i++ {
next := a + b
a = b
b = next

}
return a

}

 Here we can see an implementation of Fibonacci in Go, using a for loop. We need to keep track of the previous two values, which we'll call "a" and "b". Then we loop through, calculating the next value and "sliding" it into our window of previous values. Once our loop finishes, we know that "a" will contain the Fibonacci number that was requested. Go is an example of an "imperative" programming language, where the bulk of your program consists of a sequence of statements that are executed in order. The for loop, and its cousin the while loop, are ubiquitous in imperative languages. Most popular languages these days are imperative. And in fact, we can look at Fibonacci in

Loops

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

sub fib {

my $x = shift(@_);

my $a = 0;

my $b = 1;

foreach (0..$x - 1) {

my $next = $a + $b;

$a = $b;

$b = $next;

}

return $a;

}

Perl

Loops

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

def fib(x):
a = 0
b = 1

for i in range(0, x):
a, b = b, a + b

return a

Python

Loops

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

long

fib(long x) {
long a = 0;
long b = 1;

for (long i = 0; i < x; i++) {
long next = a + b;
a = b;
b = next;

}
return a;

}

C

Loops

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

long

fib(long x) {
long a = 0;
long b = 1;

for (long i = 0; i < x; i++) {
long next = a + b;
a = b;
b = next;

}
return a;

}

C++

Loops

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

fn fib(x: u64) -> u64 {
let mut a = 0;
let mut b = 1;

for _ in 0..x {
let next = a + b;
a = b;
b = next;

}
a

}

 Rust.

 And in all of these cases, the implementation looks more or less identical, just with slight differences in syntax.

Recursion

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

fib 0 = 0
fib 1 = 1

fib x = fib (x - 1) + fib (x - 2)

 But loops aren't the only way to repeat yourself! Another pattern is "recursion", where you define a function that calls itself. Here we can see a recursive definition of Fibonacci in Haskell, a "functional" programming language. A defining characteristic of functional languages is that modifying variables is prohibited - or at least, greatly frowned upon. One nice feature of this functional implementation is that it's very similar to the mathematical definition that we're trying to implement!

Recursion

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

long

fib(long x) {

if (x == 0) return 0;

if (x == 1) return 1;

return fib(x - 1) + fib(x - 2);

}

 This style is not limited to functional languages - we can implement this same recursive definition in imperative languages too. Here's what it looks like in C.

 One problem with this implementation is that it's slow! It might not be obvious, but we actually do an exponential amount of work, because we end up calculating each previous number multiple times. Note that this isn't a problem with recursion in general, it's just a problem with this particular implementation.

Recursion

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

fib x = fib' x 0 1
where fib' 0 a b = a

fib' x a b = fib' (x - 1) b (a + b)

 We can fix it, while still being recursive, by maintaining the previous two values in "a" and "b" variables like we did in the loop implementation. In this Haskell version, we can't _update_ a and b in the loop body, but we can achieve the same result by making a recursive call with new values for _parameters_ named a and b.

Recursion

F0 = 0
F1 = 1
Fx = Fx−1 + Fx−2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

static long

fib_(long x, long a, long b) {

if (x == 0) return a;

return fib_(x - 1, b, a + b);

}

long

fib(long x) {

return fib_(x, 0, 1);

}

 And like before, this pattern is not limited to functional languages: here it is in C.

Recursion schemes

Catamorphism

Paramorphism

Histomorphism

 Another interesting benefit of the recursive style, and of functional programming in general, is that it makes it easier to look for higher level patterns. Not just "oh there are lots of problems that we can solve with recursion". But going deeper: "How many times do we recurse?" "How much work are we allowed to do before the recursive call?" "How much work after?"

 In the functional programming world, the answers to these questions lead to a number of different "recursion schemes". Their names can sound strange if you're not used to them. (Now do you see what I mean about "mutual unintelligibility" being the most striking part of the Tower of Babel myth?) But those names do have very specific and precise meanings, which is useful when you're using functional programming as a lens to explore deep topics in computer science.

Recursion schemes

Catamorphism

Paramorphism

Histomorphism

 Today, I'll just point out that the Fibonacci sequence is an example of a "histomorphism". The "histo" part has the same root as "history", and signifies that each recursive step has access to the full history of previously computed values.

Recursion schemes

Catamorphism

Paramorphism

Histomorphism

fib x = histo step x
where step [] = 0

step (_:[]) = 1

step (a:b:_) = a + b

 Here's what Fibonacci looks like in Haskell when implemented as a histomorphism. Like all recursion schemes, you don't actually see any recursion! That's handled for you by the recursion scheme itself. We just have to specify what should happen during each recursive step. For a histomorphism, we're given a list of the previously computed values, and can inspect those values however we need to compute the next value.

Handling failureHandling failure

 The next pattern we're going to look at is how we handle error conditions in our programs. You might be surprised to learn how many different error handling strategies there are!

Digits

'0' . . . '9' ⇒ 0 . . . 9
anything else ⇒ error!

 As our running example in this section, we're going to look at some code that can parse a single digit, stored in as a single ASCII character, into the corresponding integer value. This is a process that can fail, since not every ASCII character is a digit.

Exceptions

public class ParseDigit {

public static int parseDigit(char ch)

throws NumberFormatException {

if (ch >= '0' && ch <= '9') {
return ch - '0';

}

throw new NumberFormatException();

}

}

 Many languages use "exceptions" to handle these errors conditions. Java is one of the most well-known examples. Here is what our "parse digit" function could look like in Java.

Exceptions

def parse_digit(ch):

if ord(ch) >= ord('0') and ord(ch) <= ord('9'):

return ord(ch) - ord('0')

raise ValueError("not a digit")

And here it is in Python.

Exceptions

int

parse_digit(char ch) {

if (ch >= '0' && ch <= '9') {
return ch - '0';

}

throw invalid_argument("not a digit");

}

 and in C++.

 You can think of exceptions as aborting the flow of your program. A function "throws" an exception _instead of_ returning a value. At that point, your program starts "unwinding" its call stack, looking for some code that knows how to handle that exception.

Exceptions

int

parse_digit(char ch) {

if (ch >= '0' && ch <= '9') {
return ch - '0';

}

throw invalid_argument("not a digit");

}

void

parse_file(const string& contents) {

int digit = parse_digit(contents[0]);

}

void

use_file(const string& contents) {

try {

parse_file(contents);

} catch (const invalid_argument& ex) {

cout << ex.what() << endl;

}

}

 We can expand our C++ example to show a parse exception being handled via a try/catch block. This kind of statement runs the code in the try clause, and if any part of that code (include anything that it calls) throws an exception, the catch clauses have a chance to handle the exception. Notice how the exception might not be handled by the immediate caller of the function that threw the exception - it might propagate up any number of calls on the call stack before we find an appropriate handler.

 That's one of the defining characteristics of exceptions: your callers get to decide where and how to handle them, and they might silently propagate through functions that don't mention exceptions at all. Some people like that, because it means that many of your functions can focus on the "happy path", and not have to worry about explicit error handling. Other people don't like that, because they feel that the implicit control flow is harder to reason about.

Error values

int

parse_digit(char ch) {

if (ch >= '0' && ch <= '9') {
return ch - '0';

}
return -1;

}

 Next let's look at the opposite end of the spectrum. Here is how our parse digit function might look in C, where error handling is very explicit. In C, there is no _single_ error handling strategy that is used everywhere consistently. A common pattern is to use special "sentinel" values to indicate errors. Since our parse digit function only needs the values from 0 to 9, we can use any other integer result to indicate an error. -1 is often used.

 Otherwise, the structure is not really all that different from the version that uses exceptions. We still need to detect the error condition; we just use a "return" statement instead of a "throw" statement to signal the error.

Error values

int

parse_digit(char ch) {

if (ch >= '0' && ch <= '9') {
return ch - '0';

}
return -1;

}

int

parse_file(const char* contents) {

int digit = parse_digit(contents[0]);

if (digit == -1) {
return -1;

}

return 0;

}

void

use_file(const char* contents) {

int rc = parse_file(contents);

if (rc == -1) {

printf("not a digit!\n");

}

}

 The changes are more obvious where we handle the errors. In particular, note that our parse_file function has to _explicitly_ pass the error condition on to its caller.

Error values

var InvalidDigit = errors.New("not a digit")

func ParseDigit(ch byte) (int, error) {

if ch >= '0' && ch <= '9' {

return int(ch - '0'), nil

}
return 0, InvalidDigit

}

func ParseFile(contents string) error {

_, err := ParseDigit(contents[0])

if err != nil {
return err

}
return nil

}

func UseFile(contents string) {

err := ParseFile(contents)

if err != nil {

print(err)

}

}

 In Go, the overall structure is very similar, but we can take advantage of the fact that Go functions can return _multiple_ values. That means that we don't have to reserve a sentinel value to indicate errors, and can encode errors using their own specific type. Our ParseDigit function returns _both_ a normal value and an error, and the caller knows that only one or the other should actually be used.

Error values

struct InvalidDigit;

fn parse_digit(ch: u8)

-> Result<u8, InvalidDigit> {

if ch >= b'0' && ch <= b'9' {

return Ok(ch - b'0');

}

Err(InvalidDigit)

}

fn parse_file(contents: &[u8])

-> Result<(), InvalidDigit> {

parse_digit(contents[0])?;

Ok(())

}

fn use_file(contents: &[u8]) {

match parse_file(contents) {

Ok(_) => {}

Err(_) => println!("not a digit!"),

}

}

 In Rust, we also use regular values to encode errors, but we can also express the idea that our parse_digit function returns _either_ a successful result _or_ an error. In Go, our function returned _both_, and we relied on the caller knowing that the "result" would not contain any useful data if the function returned an error.

 Rust also requires intermediate functions to explicitly propagate errors, but it adds the ? operator, which helps remove some of the boilerplate involved.

Error values

data InvalidDigit = InvalidDigit

parseDigit ch =
if ch >= '0' && ch <= '9' then

Right (ord ch - ord '0')
else

Left InvalidDigit

parseFile contents = do

parseDigit (head contents)

useFile contents =
case parseFile contents of

Right _ -> pure ()
Left _ -> print "not a digit"

 And lastly, error handling is not specific to imperative languages; errors can occur when you're using a functional language too. Here is what our example looks like in Haskell. It's very similar to Rust, though the either type is actually called "Either". And Haskell uses "do" notation to accomplish the same task as Rust's question mark operator. (This works because Haskell's Either type is a "monad" - another esoteric functional programming term, which we do _not_ have the time to dive into today.)

Cleaning upCleaning up

 Next we're going to talk about how you clean up after yourself. This is especially important for long-running programs like servers. If you need to allocate or acquire resources as part of handling a request, but don't release those resources when you're done, you'll quickly exhaust your available capacity.

Manual memory management

struct person {

char* name;
int age;

};

struct person*

person_new(const char *name, int age) {
struct person* person =

malloc(sizeof(struct person));

person->name = strdup(name);
person->age = age;
return person;

}

void

person_free(struct person* loc) {

free(loc->name);

free(loc);

}

 The original resource that programs have had to manage since the dawn of computing is memory. To start, we're going to look at what's needed in C, where there are no language facilities to help you. Here you can see a data type, along with helper functions for allocating and deallocating instances of this type that live on the heap. Note how one of the fields itself needs to be managed, since we make a copy of the person's name.

Manual memory management

struct person {

char* name;
int age;

};

struct person*

person_new(const char *name, int age) {
struct person* person =

malloc(sizeof(struct person));

person->name = strdup(name);
person->age = age;
return person;

}

void

person_free(struct person* loc) {

free(loc->name);

free(loc);

}

void

process_family(void) {

struct person* me = person_new("Doug", 42);

printf("%s is %d years old\n", me->name, me->age);

person_free(me);

}

 And here we can how you might use these functions to handle instances of this new type.

Manual memory management

struct person {

char* name;
int age;

};

struct person*

person_new(const char *name, int age) {
struct person* person =

malloc(sizeof(struct person));

person->name = strdup(name);
person->age = age;
return person;

}

void

person_free(struct person* loc) {

free(loc->name);

free(loc);

}

void

process_family(void) {

struct person* me = person_new("Doug", 42);

printf("%s is %d years old\n", me->name, me->age);

/* person_free(me); */
}

 But because you're managing resources manually, you'd better make sure you free everything!

 Now, I'm not gonna lie, this is very cumbersome to have to manually manage your resources like this! But it does have one genuine benefit, too - you can see in your code precisely where everything is acquired or released. Especially for low-level or real-time programs, it can be useful to know that every instruction that the CPU executes is due to code that you wrote.

 However, it's fair to say that most programmers have decided that that benefit is not worth the extra work needed to manage resources manually - at least for memory!

Automatic memory management

type Person struct {

Name string
Age int

}

func ProcessFamily() {

me := Person{Name: "Doug", Age: 42}

fmt.Printf("%s is %d years old\n", me.Name, me.Age)

}

 If you want to avoid that manual bookkeeping, a simple choice would be to use a language that does this bookkeeping for you. Here we see the same example in Go,

Automatic memory management

@dataclass
class Person:

name: str
age: int

def process_family():

me = Person("Doug", 42)

print(f"{me.name} is {me.age} years old")

 and in Python, both of which use garbage collectors to manage memory for you.

Automatic memory management

struct person {

string* name;
int age;

person(string name_, int age_) {

name = new string(name_);
age = age_;

}

~person() {
delete name;

}

};

void

process_family(void) {

person* me = new person("Doug", 42);
cout << *me->name << " is "

<< me->age << " years old" << endl;
delete me;

}

 Garbage collection is not your only option! C++ "smart pointers" are another approach that is just as automatic. Here's the C++ version that manually manages memory, like our original C version.

Automatic memory management

struct person {

unique_ptr<string> name;
int age;

person(const string& name, int age) :

name(make_unique<string>(name)),

age(age) {}

~person() = default;

};

void

process_family(void) {
shared_ptr<person> me =

make_shared<person>("Doug", 42);
cout << *me->name << " is "

<< me->age << " years old" << endl;

}

 And here's the C++ that uses unique_ptr and shared_ptr, which automatically release the underlying memory when the pointer goes out of scope.

Automatic memory management

struct Person {

name: Box<String>,
age: u8,

}

impl Person {

fn new(name: &str, age: u8) -> Person {

let name = name.to_string();

let name = Box::new(name);

Person { name, age }

}

}

fn process_family() {

let me = Arc::new(Person::new("Doug", 42));

println!("{} is {} years old", me.name, me.age);

}

 Rust has a similar facility, but its smart pointers are called "Box" and "Arc" instead of "unique_ptr" and "shared_ptr".

Managing other resources

int

save_file(const char* filename)

{

FILE* fp = fopen(filename, "w");

if (fp == NULL) goto error0;

int rc = fputs("lots of interesting data", fp);

if (rc < 0) goto error1;

fclose(fp);

return 0;

error1:

fclose(fp);
error0:

return -1;

}

 Of course, memory is not the only resource that we have to manage. For example, you might need to open a local file and save some data to it. Your OS limits the number of files that your program can have open at any time. How does your language help you remember to _close_ the file when you're done?

 As you might expect, in C, the language doesn't help you - you have to remember to close the file yourself. Note how cleanup and error handling interact with each other! If there are multiple exit points in our function, we have to remember to clean up after ourselves after all of them!

Managing other resources

void

save_file(const char* filename)

{

ofstream fp(filename);
fp << "lots of interesting data";

}

 The pattern that we saw in C++ for managing memory works for other resources too. The general name of the pattern is "RAII" - Resource Acquisition is Initialization. You create an object that will _clean up itself_ when it goes out of scope. unique_ptr cleans up memory, ofstream cleans up an open file. Because RAII is tied to the lifetime of a value, this process is entirely deterministic - you can tell exactly when each resource will be freed. And RAII combines nicely with exceptions: even if one of the file I/O functions raises an exception, the file will be correctly closed, without us having to write any extra code.

Managing other resources

fn save_file(filename: &str) -> Result<(), std::io::Error> {

let mut fp = File::create(filename)?;

write!(fp, "lots of interesting data")?;

Ok(())

}

 Like with smart pointers, Rust uses RAII to manage most resources as well. And RAII plays just as nicely with error values. If either of the ? operators returns an error, the file will be correctly closed.

Managing other resources

func SaveFile(filename string) error {

fp, err := os.Open(filename)

if err != nil {
return err

}

defer fp.Close()

_, err = fp.WriteString("lots of interesting data")

if err != nil {
return err

}

return nil

}

 How does this work in a garbage collected language? You might be tempted to use a similar trick, and have a garbage-collected object manage the resource for you. However, garbage collection is typically nondeterministic - there's no guarantee _when_ your objects will be freed, just that they will be _eventually_. That's not good enough for managing resources like open files, where you usually want to ensure that the file is closed _as soon as you're done using it_.

 Go's solution is the "defer" statement. It "registers" a function call, which is guaranteed to be called once the enclosing function returns, regardless of _where_ the function returns.

Managing other resources

def save_file(filename):

with open(filename, "w") as fp:

fp.write("lots of interesting data")

 Python's approach is the "with" statement. You provide a "context manager", which is a special kind of value that knows how to "start" and "stop", or "open" and "close", itself. The with statement guarantees that the context manager will be opened before any of the statements in the body, and that it will be closed after the with statement is done executing - again, no matter _how_ or _where_ control leaves the with statement.

Managing other resources

fn save_file(filename: []const u8) !void {

const cwd = std.fs.cwd();

var fp = try cwd.createFile(filename, .{});

defer fp.close();

_ = try fp.write("lots of interesting data");

}

 To wrap things up in this section, we can look at Zig, which is an intersting hybrid of all of the approaches we've seen so far. Like C, the Zig ethos is that every instruction the CPU executes should be visible in the code - so no "hidden" behavior like RAII guards. It uses a defer statement like Go to ensure that resources are freed. Its error handling is more like Rust, where fallible functions _either_ return a value or an error, and it has an analogue to Rust's ? operator, though it's spelled "try".

ConcurrencyConcurrency

 The last area that we'll look at is concurrency. Broadly speaking, our programs are either CPU-bound or I/O-bound. A CPU-bound program performs pure computation, and is only limited by the speed of the CPU that it's executing on. Most of the examples that we've seen so far today have been CPU-bound. But most programs these days are not CPU-bound, and have to perform large amounts of I/O to accomplish their work, whether reading and writing from local disk, or communicating with other programs running on other machines. A defining characteristic of I/O-bound work is that our programs have to _wait_ for it to finish. We don't know how long it will take for another program to respond, or for its response to make its way back to us.

Goroutines

func DownloadFiles() error {

err := Download("https://a.example.com/a.csv")

if err != nil {
return err

}

err = Download("https://b.example.com/b.csv")

if err != nil {
return err

}

err = Download("https://c.example.com/c.csv")

if err != nil {

return err

}

return nil

}

 As a running example, we can consider a program that needs to download three files from separate servers. Here is how that program might look in Go. (For simplicity, we're assuming that we have a function that we can call that actually performs the download.)

 An important thing to note about this program is that the Download function is a _blocking_ call - it won't return until the requested file has been fully downloaded. That means that the second download doesn't start until the first one is done. That's probably not the most efficient strategy, since we don't know how far away the three servers are, or how fast our connections to them are. For a small number of downloads like this, it would be better to perform them concurrently, to fully maximize our available network capacity.

 (Also note that this is a good example of how "concurrency" is not the same thing as "parallelism". At the hardware level, our network card can only receive packets from one connection at a time, so our downloads are not parallel. The packets from each connection can be interleaved with each other, though, meaning that they are concurrent.)

Goroutines

func DownloadFiles() error {

go Download("https://a.example.com/a.csv")

go Download("https://b.example.com/b.csv")

go Download("https://c.example.com/c.csv")
return nil

}

 Go provides a nice facility for performing work concurrently, by creating a new "goroutine" for each download. This is what the concurrent version looks like, by performing each Download call within a separate goroutine.

 Each goroutine is a separate flow of code, which looks and acts like its own independent synchronous process. Go's runtime takes care of scheduling goroutines efficiently across however many CPUs are available. Importantly, if any goroutine is blocked - waiting for an I/O operation to complete, for instance - the Go scheduler automatically moves it aside to allow other goroutines to proceed.

 However, we've lost two things with this implementation. First, we no longer have access to the error value that tells us if a download fails. And second, goroutines run in the background, and so our DownloadFiles function returns immediately, without waiting for all three downloads to finish.

Goroutines

func DownloadFiles() error {
var wg sync.WaitGroup
var errA error
var errB error
var errC error

go downloadOne("https://a.example.com/a.csv", &wg, &errA)

go downloadOne("https://b.example.com/b.csv", &wg, &errB)

go downloadOne("https://c.example.com/c.csv", &wg, &errC)

wg.Wait()

if errA != nil { return errA }

if errB != nil { return errB }

if errC != nil { return errC }
return nil

}

func downloadOne(url string, wg *sync.WaitGroup, err *error) {

wg.Add(1)

defer wg.Done()

*err = Download(url)

}

 Those problems are not insurmountable. Go provides several helper types in its standard library to handle these kinds of situation. In particular, we can use a "WaitGroup" to wait for all three goroutines to finish before returning. Because the downloads happen in goroutines, they still get to run concurrently.

OS threads

def download_files():

a = download_one("https://a.example.com/a.csv")

b = download_one("https://b.example.com/b.csv")

c = download_one("https://c.example.com/c.csv")

a.join()

b.join()

c.join()

def download_one(url):

thread = threading.Thread(target=download, args=(url,))

thread.start()
return thread

 Next we can look at what this example might look like another language. Here we see a Python version that superficially looks like it's doing the same thing. However, there's an important difference: this code is spawning _OS_ threads instead of _goroutines_ to handle each download.

 The programming model is very similar - you have multiple independent flows of code, which can execute concurrently. You make blocking I/O calls without worrying how long they will take, and let the scheduler worry about moving them aside to allow other work to proceed.

 The primary difference is how those flows are managed. Goroutines are an example of "green" threads, which means that they are managed inside your program itself. (In the case of Go, this is provided by the Go runtime, not by any code you have to write yourself.) OS threads, on the other hand, are managed by your machine's operating system.

OS threads

def download_files():
files = 100000 * ["https://a.example.com/a.csv"]

threads = [download_one(url) for url in files]
for thread in threads:

thread.join()

def download_one(url):

thread = threading.Thread(target=download, args=(url,))

thread.start()
return thread

 This single difference has quite a lot of ramifications. A good rule of thumb is that OS threads are "heavy", since they have a footprint down in your OS kernel. That means you should try to avoid creating lots of them (where "lots" is on the order of 10s of thousands and higher). Whereas green threads are just regular data structures inside your program, and it's typically no problem to create millions of them, if that's the right way to structure your program.

 On the other hand, a green thread scheduler is its own API, which your code must know how to interact with. Again, with Go, this is handled for you by the language and the standard library. But it means, for instance, that it's hard to call code written in another language from your Go code, since that "foreign" code won't know how to interact with the Go scheduler. OS threads, on the other hand, are managed by the kernel, and contain any code, written in any language, that the machine knows how to execute.

Async / futures / promises / tasks

function downloadFiles() {

return download("https://a.example.com/a.csv").then(

() => download("https://b.example.com/b.csv").then(

() => download("https://c.example.com/c.csv")

)

);

}

 So far we've seen two examples of the same basic programming model: you spawn multiple flows of synchronous blocking code, and let a scheduler take care of executing those efficiently.

 There is another model that is equally popular, _asynchronous_ or _event-driven_ I/O. Here we can see what an async version of our example looks like, using JavaScript's original "Promise" API. Here, our download function doesn't block until the download is finished; instead, it creates a "promise" or "future", which you can think of as a handle to the I/O operation that's could proceed concurrently in the background. The promise will fire an event when the operation has finished, and we can register handlers to execute additional code when those events fire.

Async / futures / promises / tasks

function downloadFiles() {

return Promise.all([

download("https://a.example.com/a.csv"),

download("https://b.example.com/b.csv"),

download("https://c.example.com/c.csv"),

]);

}

 In this case, the way that we've chained these operations together actually means that the downloads will execute sequentially, just like with our initial attempt in Go. To make the downloads happen sequentially, we can use the "Promise.all" method provided by JavaScript.

Async / futures / promises / tasks

function downloadFiles() {

return download("https://a.example.com/a.csv").then(

() => download("https://b.example.com/b.csv").then(

() => download("https://c.example.com/c.csv")

)

);

}

 Looking back at the original JavaScript, though, we can already see an example of what people refer to as "callback hell". We end up creating a chain of callbacks to handle each of the discrete blocking steps that can occur in a larger I/O operation. If we're not careful, this can lead to some hard-to-follow code, as our callback handlers creep further and further to the right.

Async / futures / promises / tasks

async function downloadFiles() {

await download("https://a.example.com/a.csv");

await download("https://b.example.com/b.csv");

await download("https://c.example.com/c.csv");

}

async function download(url) { console.log(url); }

 To solve this, JavaScript provides special syntax for defining functions that work with promises. Here's what the sequential version looks like with this syntax. A function can be marked "async", to indicate that when you call it, it will return a _promise_ that will execute the function body concurrently, instead of immediately executing in a blocking fashion. Inside an async function, you use the "await" keyword to make calls to _other_ async functions.

Async / futures / promises / tasks

async function downloadFiles() {

await Promise.all([

download("https://a.example.com/a.csv"),

download("https://b.example.com/b.csv"),

download("https://c.example.com/c.csv"),

]);

}

 And here we can see how our Promise.all example looks with async/await. Some people like this syntax because it makes it obvious in the code which steps could possibly block. Other people dislike this syntax because of what they call the "function coloring" problem - you can only (easily) call an async function from some other async function, so "async-ness" can easily become viral, requiring you to mark a function as async even though it's not really doing any blocking work itself.

 And lastly, this asynchronous pattern is not limited to JavaScript.

Async / futures / promises / tasks

async def download_files():

await asyncio.gather(

download("https://a.example.com/a.csv"),

download("https://b.example.com/b.csv"),

download("https://c.example.com/c.csv"),

)

 Here we can see the equivalent in Python

Async / futures / promises / tasks

async fn download_files() -> Result<(), Error> {

futures::try_join!(

download("https://a.example.com/a.csv"),

download("https://b.example.com/b.csv"),

download("https://c.example.com/c.csv"),

)?;

Ok(())

}

 and in Rust. Rust's implementation highlights another benefit of the async style. Async functions are just special syntax for a function that returns a promise, and a promise is a perfectly normal value. That means that you can write _custom_ schedulers, and possibly even have multiple schedulers in the same program. That lets you use the same syntax to enqueue tasks into separate thread pools or the global event loop, should that be useful.

 We've come to the end of our journey. We still have a multitude of programming languages (and always will!). But hopefully I've been able to add a bit of order to that multitude for you today.

 If you've encountered a new style of programming that used to be completely alien to you, consider if there are any parts of it that you can bring back to your native language and ecosystem. If there aren't, you can at least be thankful that you now have a better, more mindful appreciation for the ways things are done in your language. And if you do find yourself with some spare time for personal learning and experimentation, consider implementing a toy project in a language that's completely outside your comfort zone. It will be worth the effort!

 Thanks for your time!

Picture credits

Slide 2 Meister der Weltenchronik, “Weltchronik in Versen, Szene: Der Turmbau zu Babel”

Public domain, https://commons.wikimedia.org/wiki/File:Meister_der_Weltenchronik_001.jpg

Slide 2 ABC Television, “The $10,000 Pyramid”

Public domain, https://commons.wikimedia.org/wiki/File:Dick_Clark_$10000_Pyramid.JPG

Slide 3 Matjaž Mirt, “Tern/čigra”

CC-BY-2.0, https://flic.kr/p/2kXydKp

Slide 4 Mark Gunn, “This just tern’ed into a swarm!”

CC-BY-2.0, https://flic.kr/p/P11JH1

Slide 5 Dave Shafer, “Luzern mirror maze, Switzerland”

CC-BY-2.0, https://flic.kr/p/5RQPx9

Slide 10 Blondinrikard Fröberg, “Fail”

CC-BY-2.0, https://flic.kr/p/B9WA8y

Slide 14 Alan Levine, “King of the Trash Hill”

CC-BY-2.0, https://flic.kr/p/eRjo3W

Slide 18 Jim, “Duvel Assembly Line”

CC-BY-SA-2.0, https://flic.kr/p/NpqGS

Slide 22 Mark Gunn, “Time to tern in”

CC-BY-2.0, https://flic.kr/p/NHDXRb

https://commons.wikimedia.org/wiki/File:Meister_der_Weltenchronik_001.jpg
https://commons.wikimedia.org/wiki/File:Dick_Clark_$10000_Pyramid.JPG
https://flic.kr/p/2kXydKp
https://flic.kr/p/P11JH1
https://flic.kr/p/5RQPx9
https://flic.kr/p/B9WA8y
https://flic.kr/p/eRjo3W
https://flic.kr/p/NpqGS
https://flic.kr/p/NHDXRb

	Introduction
	Repetition
	Handling failure
	Cleaning up
	Concurrency
	Conclusion

