
Incremental, zero-config Code Navigation

using stack graphs

Douglas Creager

@dcreager

Languages, Systems, and Data Seminar

May 27, 2021 – UC Santa Cruz

https://dcreager.net/


Builds on the Scope Graphs framework

from Eelco Visser’s group at TU Delft.

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/


Builds on the Scope Graphs framework

from Eelco Visser’s group at TU Delft.

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/

Curry On Barcelona 2017

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/
https://conf.researchr.org/details/curryon-2017/curryon-2017-papers/42/Scope-Graphs-A-Fresh-Look-at-Name-Binding-in-Programming-Languages


Code NavigationCode Navigation



Code Navigation

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

broil()



Code Navigation

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

broil()



Code Navigation

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

broil()



Why is this hard?Why is this hard?



Why is this hard?

stove.py

def broil():

pass

def broil():

pass

def saute():

pass

broil()



Why is this hard?

stove.py

def broil():

pass

def broil():

pass

def saute():

pass

broil()



Why is this hard?

stove.py

def broil():

pass

def broil():

pass

def saute():

pass

broil()



Why is this hard?

stove.rs

fn broil() {}

fn broil() {}

fn saute() {}

fn main() {

broil();

}

X



Why is this hard?

stove.rs

fn broil() {}

fn broil() {}

fn saute() {}

fn main() {

broil();

}

X



Why is this hard?

stove.rs

fn broil() {}

fn broil() {}

fn saute() {}

fn main() {

broil();

}

X



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import *

chef.py

from kitchen import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import *

chef.py

from kitchen import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import *

chef.py

from kitchen import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import *

def broil():

print("We're broiling!")

import stove

return stove.broil()

chef.py

from kitchen import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import *

def broil():

print("We're broiling!")

import stove

return stove.broil()

chef.py

from kitchen import broil

broil()



Why is this hard?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import *

def broil():

print("We're broiling!")

import stove

return stove.broil()

chef.py

from kitchen import broil

broil()



Why is this hard?

stove.py

class Stove(object):

def bake(self):

pass

def broil(self):

pass

def saute(self):

pass

kitchen.py

from stove import *

chef.py

from kitchen import Stove

stove = Stove()

stove.broil()



Why is this hard?

stove.py

class Stove(object):

def bake(self):

pass

def broil(self):

pass

def saute(self):

pass

kitchen.py

from stove import *

chef.py

from kitchen import Stove

stove = Stove()

stove.broil()



Why is this hard?

stove.py

class Stove(object):

def bake(self):

pass

def broil(self):

pass

def saute(self):

pass

kitchen.py

from stove import *

chef.py

from kitchen import Stove

stove = Stove()

stove.broil()



Why is this hard?

dataflow.py

def passthrough(x):

return x

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one



Why is this hard?

dataflow.py

def passthrough(x):

return x

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one



Why is this hard?

dataflow.py

def passthrough(x):

return x

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one



Oh is that all?



Zero configuration

We don’t want to have to ask the package

owner how to collect the data we need.

Or ask them to configure a job to produce that data.

It should Just Work.



SCALE

200 million repositories and counting

2 billion contributions

in the last 12 months

500 programming languages



When do we do the work?

Index Query



When do we do the work?

XIndex Query

This is an interactive feature, so we can’t do too much work at query time.

Goal: < 100ms



When do we do the work?

XIndex Query

Because of our scale, we can’t doo too much work at index time, either!

(Compute and storage costs are too high, work is wasted, etc.)



When do we do the work?

Index Query

We want to strike a balance.

Precalculate as much as we can.

Minimize the amount of duplicated work.

Defer some work until query time to make that happen.



Why is this hard?

I Different languages have different name binding rules.

I Some of those rules can be quite complex.

I The result might depend on intermediate files.

I We don’t want to require manual per-repo configuration.

I We need to balance work between index time vs query time.



Incremental resultsIncremental results



Incremental results

In a typical commit, a small fraction of files in the repo change.

We want to reuse results that we’ve

already calculated for unchanged files.

Structural sharing (like git itself) helps save storage.

Incremental processing also helps save compute.



What would incremental results look like?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()

The reference at kitchen.py:3:1

refers to stove.broil in some other file

+
stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



What would incremental results look like?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()

The reference at kitchen.py:3:1

refers to stove.broil in some other file

+

stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



What would incremental results look like?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()

The reference at kitchen.py:3:1

refers to stove.broil in some other file

+
stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



What would incremental results look like?

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()

The reference at kitchen.py:3:1

refers to stove.broil in some other file

+
stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



Stack graphs



Stack graphs

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

kitchen.py

from stove import broil

broil()



Stack graphs

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake



Stack graphs

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake



Stack graphs

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake



Stack graphs

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake



Stack graphs

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake



Stack graphs

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: �



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: �



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈.broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈stove.broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈stove.broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈.broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: 〈broil〉



Stack graphs

↑ stove↑ .

↑ saute

↑ broil

↑ bake

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

Symbol stack: �



The dataflow example

dataflow.py

def passthrough(x):

return x

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: �
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈dataflow.passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈dataflow.passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈passthrough()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈()bAc.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈x.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈x.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈0.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈0.one〉
Scope stack: (A)



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈0.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈A.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈A.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈A.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈.one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: 〈one〉
Scope stack: ◦



The dataflow example

↑ a

↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

Symbol stack: �
Scope stack: ◦



Are we done?

Index Query

We’re still doing too much work at query time!

Can we shift more of the work to index time,

while still remaining incremental?



Partial pathsPartial paths



Partial paths

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦}

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦}

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦}

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

kitchen.py

from stove import broil

broil()

↑ kitchen ↑ .

↓ broil

↑ broil ↓ broil ↓ . ↓ stove

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦}

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake

{〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

stove.broil is defined at stove.py:4:5.



Partial paths

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake

{〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

stove.broil is defined at stove.py:4:5.



Partial paths

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake

{〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

stove.broil is defined at stove.py:4:5.



Partial paths

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

↑ stove↑ .

↑ saute

↑ broil

↑ bake

{〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

stove.broil is defined at stove.py:4:5.



Concatenating partial paths

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦} + {〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

ψ = �, φ = ◦

The reference at kitchen.py:3:1

refers to stove.broil in some other file
+ stove.broil is defined at stove.py:4:5



Concatenating partial paths

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦} + {〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

ψ = �, φ = ◦

The reference at kitchen.py:3:1

refers to stove.broil in some other file
+ stove.broil is defined at stove.py:4:5



Concatenating partial paths

{�, ◦} ↓ broil ~~> ↑ broil {�, ◦}

The reference at kitchen.py:3:1

is defined at stove.py:4:5.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

dataflow.passthrough is a function

that can be invoked.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

dataflow.passthrough is a function

that can be invoked.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

dataflow.passthrough is a function

that can be invoked.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

dataflow.passthrough is a function

that can be invoked.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

+ {〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

ψ = 〈.one〉, φ = ◦, φA = (A)

If you can find what dataflow.passthrough

resolves to and can call it, then the result

should have a member named one

which the reference at a.py:6:16 resolves to.

+ dataflow.passthrough is a function

that can be invoked.



The dataflow example

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦} + {〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

ψ = 〈.one〉, φ = ◦, φA = (A)

If you can find what dataflow.passthrough

resolves to and can call it, then the result

should have a member named one

which the reference at a.py:6:16 resolves to.

+ dataflow.passthrough is a function

that can be invoked.



The dataflow example

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦} + {〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

ψ = 〈.one〉, φ = ◦, φA = (A)

If you can find what dataflow.passthrough

resolves to and can call it, then the result

should have a member named one

which the reference at a.py:6:16 resolves to.

+ dataflow.passthrough is a function

that can be invoked.



The dataflow example

{�, ◦} one ~~> R {〈.one〉, (A)}

+ {ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

ψ = 〈.one〉, φ = ◦

The result of calling dataflow.passthrough

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

{�, ◦} one ~~> R {〈.one〉, (A)} + {ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

ψ = 〈.one〉, φ = ◦

The result of calling dataflow.passthrough

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

{�, ◦} one ~~> R {〈.one〉, (A)} + {ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

ψ = 〈.one〉, φ = ◦

The result of calling dataflow.passthrough

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

{�, ◦} one ~~> JUMP {〈0.one〉, (A)}

Positional parameter 0

should have a member named one

which the reference at a.py:6:16 resolves to.

Resolve the JUMP node.



The dataflow example

{�, ◦} one ~~> JUMP {〈0.one〉, (A)}

Positional parameter 0

should have a member named one

which the reference at a.py:6:16 resolves to.

Resolve the JUMP node.



The dataflow example

{�, ◦} one ~~> A {〈0.one〉, ◦}

+ {〈0〉 · ψ, φ} A ~~> C {ψ, φ}

ψ = 〈.one〉, φ = ◦

Positional parameter 0

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

{�, ◦} one ~~> A {〈0.one〉, ◦} + {〈0〉 · ψ, φ} A ~~> C {ψ, φ}

ψ = 〈.one〉, φ = ◦

Positional parameter 0

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

{�, ◦} one ~~> A {〈0.one〉, ◦} + {〈0〉 · ψ, φ} A ~~> C {ψ, φ}

ψ = 〈.one〉, φ = ◦

Positional parameter 0

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

{�, ◦} one ~~> C {〈.one〉, ◦}

+ {〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

ψ = �, φ = ◦

The class A

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

{�, ◦} one ~~> C {〈.one〉, ◦} + {〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

ψ = �, φ = ◦

The class A

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

{�, ◦} one ~~> C {〈.one〉, ◦} + {〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

ψ = �, φ = ◦

The class A

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

{�, ◦} one ~~> one {�, ◦}

The definition at a.py:4:5

is what the reference at

a.py:6:16 resolves to.



Index Query

Clone changed files

Parse using tree-sitter

Construct stack graph

Find partial paths

Load partial paths lazily

Stitch them together

p50: 5 sec

p99: 1-2 min

p50: 50ms

p99: 100ms



Index Query

Clone changed files

Parse using tree-sitter

Construct stack graph

Find partial paths

Load partial paths lazily

Stitch them together

p50: 5 sec

p99: 1-2 min

p50: 50ms

p99: 100ms



One more for the road

MyMap.java

import java.util.HashMap;

class MyMap extends HashMap<String, String> {

int firstLength() {

return this.entrySet().iterator()

.next().getKey().length();

}

}



Picture credits

Slide 3 Ivan Radic, “Close-up of a compass graffiti on the ground”

CC-BY-2.0, https://flic.kr/p/2kGKMtM

Slide 5 Mustang Joe, “I swear...”

Public domain, https://flic.kr/p/VSLwD6

Slide 13 Marco Verch, “Close-up, a piece of yellow cake with red currant berries”

CC-BY-2.0, https://flic.kr/p/2jikJsQ

Slide 15 Joseph Gage, “Massive goose gaggle”

CC-BY-SA-2.0, https://flic.kr/p/2kJfaCt

Slide 21 Katja Schulz, “Inchworm”

CC-BY-2.0, https://flic.kr/p/PJMP4w

Slide 24 Marco Verch, “Stack of pancakes with berries on a plate”

CC-BY-2.0, https://flic.kr/p/2jYUh8M

Slide 32 Seattle Municipal Archives, “West Seattle Bridge under construction, circa 1983”

CC-BY-2.0, https://flic.kr/p/7jKWYi

https://flic.kr/p/2kGKMtM
https://flic.kr/p/VSLwD6
https://flic.kr/p/2jikJsQ
https://flic.kr/p/2kJfaCt
https://flic.kr/p/PJMP4w
https://flic.kr/p/2jYUh8M
https://flic.kr/p/7jKWYi


Picture credits

Slide 3 Ivan Radic, “Close-up of a compass graffiti on the ground”

CC-BY-2.0, https://flic.kr/p/2kGKMtM

Slide 5 Mustang Joe, “I swear...”

Public domain, https://flic.kr/p/VSLwD6

Slide 13 Marco Verch, “Close-up, a piece of yellow cake with red currant berries”

CC-BY-2.0, https://flic.kr/p/2jikJsQ

Slide 15 Joseph Gage, “Massive goose gaggle”

CC-BY-SA-2.0, https://flic.kr/p/2kJfaCt

Slide 21 Katja Schulz, “Inchworm”

CC-BY-2.0, https://flic.kr/p/PJMP4w

Slide 24 Marco Verch, “Stack of pancakes with berries on a plate”

CC-BY-2.0, https://flic.kr/p/2jYUh8M

Slide 32 Seattle Municipal Archives, “West Seattle Bridge under construction, circa 1983”

CC-BY-2.0, https://flic.kr/p/7jKWYi

github/stack-graphs

tree-sitter/tree-sitter-graph

https://flic.kr/p/2kGKMtM
https://flic.kr/p/VSLwD6
https://flic.kr/p/2jikJsQ
https://flic.kr/p/2kJfaCt
https://flic.kr/p/PJMP4w
https://flic.kr/p/2jYUh8M
https://flic.kr/p/7jKWYi
https://github.com/github/stack-graphs
https://github.com/tree-sitter/tree-sitter-graph


B 7

↑ A ↑ a

↑ A2 ↑ __main__2 ↑ A3b•c

↓ A ↓ a

↓ A4 ↓ __main__4 ↓ A3b7c



Are we done?

I Different languages have different name binding rules.

I Some of those rules can be quite complex.

I The result might depend on intermediate files.

I We don’t want to require manual per-repo configuration.

I We need incremental processing to handle our scale.



Are we done?

I Different languages have different name binding rules.

I Some of those rules can be quite complex.

I The result might depend on intermediate files.

I We don’t want to require manual per-repo configuration.

I We need incremental processing to handle our scale.



Are we done?

I Different languages have different name binding rules.

I Some of those rules can be quite complex.

I The result might depend on intermediate files.

I We don’t want to require manual per-repo configuration.

I We need incremental processing to handle our scale.



Are we done?

I Different languages have different name binding rules.

I Some of those rules can be quite complex.

I The result might depend on intermediate files.

I We don’t want to require manual per-repo configuration.

I We need incremental processing to handle our scale.



Making stack graphsMaking stack graphs



tree-sittertree-sitter

https://tree-sitter.github.io/
https://tree-sitter.github.io/


tree-sitter

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

broil()



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def

}

@name



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def

}

@name



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def

}

@name



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def

}

@name



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def
}

@name



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def
}

@name



github/stack-graphs

tree-sitter/tree-sitter

tree-sitter/tree-sitter-graph

https://github.com/github/stack-graphs
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter-graph


github/stack-graphs

tree-sitter/tree-sitter

tree-sitter/tree-sitter-graph

tree-sitter/tree-sitter-python

tree-sitter/tree-sitter-javascript

tree-sitter/tree-sitter-rust

tree-sitter/tree-sitter-ruby

elixir-lang/tree-sitter-elixir

r-lib/tree-sitter-r

...

https://github.com/github/stack-graphs
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter-graph
https://github.com/tree-sitter/tree-sitter-python
https://github.com/tree-sitter/tree-sitter-javascript
https://github.com/tree-sitter/tree-sitter-rust
https://github.com/tree-sitter/tree-sitter-ruby
https://github.com/elixir-lang/tree-sitter-elixir
https://github.com/r-lib/tree-sitter-r


Extras

stove.rs

fn broil() {}

fn broil() {}

fn saute() {}

↑ stove↑ ::

↑ broil

↑ saute

↑ broil


	Code Navigation
	Why is this hard?
	Incremental results
	Stack graphs
	Partial paths
	Closing
	Appendix
	Producing stack graphs

