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Oh is that all?



Zero configuration

We don’t want to have to ask the package

owner how to collect the data we need.

Or ask them to configure a job to produce that data.

It should Just Work.



SCALE

200 million repositories and counting

2 billion contributions

in the last 12 months

500 programming languages
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XIndex Query

This is an interactive feature, so we can’t do too much work at query time.

Goal: < 100ms
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XIndex Query

Because of our scale, we can’t doo too much work at index time, either!

(Compute and storage costs are too high, work is wasted, etc.)



When do we do the work?

Index Query

We want to strike a balance.

Precalculate as much as we can.

Minimize the amount of duplicated work.

Defer some work until query time to make that happen.



Why is this hard?

I Different languages have different name binding rules.

I Some of those rules can be quite complex.

I The result might depend on intermediate files.

I We don’t want to require manual per-repo configuration.

I We need to balance work between index time vs query time.
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Incremental results

In a typical commit, a small fraction of files in the repo change.

We want to reuse results that we’ve

already calculated for unchanged files.

Structural sharing (like git itself) helps save storage.

Incremental processing also helps save compute.
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Are we done?

Index Query

We’re still doing too much work at query time!

Can we shift more of the work to index time,

while still remaining incremental?



Partial pathsPartial paths
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broil()
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↑ broil ↓ broil ↓ . ↓ stove

{�, ◦} ↓ broil ~~> {〈stove.broil〉, ◦}

The reference at kitchen.py:3:1 refers to stove.broil in some other file
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{〈stove.broil〉 · ψ, φ} ~~> ↑ broil {ψ, φ}

stove.broil is defined at stove.py:4:5.
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The dataflow example

dataflow.py

def passthrough(x):

return x

↑ dataflow

↑ .

↑ passthrough↑ ()b•c

R

↓ x

F ↑ x ↓ x

↓ 0 JUMP

{〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

dataflow.passthrough is a function

that can be invoked.
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The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

If you can find what dataflow.passthrough resolves to and can call it

then the result should have a member named one

which the reference at a.py:6:16 resolves to.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈0〉 · ψ, φ} A ~~> C {ψ, φ}

The class A is positional parameter 0

in the call to dataflow.passthrough.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

a.py

from dataflow import passthrough

class A:

one = 1

passthrough(A).one ↑ a↑ .

↓ passthrough ↓ ()bAc ↓ . ↓ one↓ A

↑ 0

A

↑ A C ↑ . ↑ one

↑ passthrough ↓ passthrough ↓ . ↓ dataflow

{〈.one〉 · ψ, φ} C ~~> one {ψ, φ}

The class A has a class member named one

which is defined at a.py:4:5.



The dataflow example

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦}

+ {〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

ψ = 〈.one〉, φ = ◦, φA = (A)

If you can find what dataflow.passthrough

resolves to and can call it, then the result

should have a member named one

which the reference at a.py:6:16 resolves to.

+ dataflow.passthrough is a function

that can be invoked.



The dataflow example

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦} + {〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

ψ = 〈.one〉, φ = ◦, φA = (A)

If you can find what dataflow.passthrough

resolves to and can call it, then the result

should have a member named one

which the reference at a.py:6:16 resolves to.

+ dataflow.passthrough is a function

that can be invoked.



The dataflow example

{�, ◦} one ~~> {〈dataflow.passthrough()bAc.one〉, ◦} + {〈dataflow.passthrough()bφAc〉 · ψ, φ} ~~> R {ψ, φA}

ψ = 〈.one〉, φ = ◦, φA = (A)

If you can find what dataflow.passthrough

resolves to and can call it, then the result

should have a member named one

which the reference at a.py:6:16 resolves to.

+ dataflow.passthrough is a function

that can be invoked.



The dataflow example

{�, ◦} one ~~> R {〈.one〉, (A)}

+ {ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

ψ = 〈.one〉, φ = ◦

The result of calling dataflow.passthrough

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

{�, ◦} one ~~> R {〈.one〉, (A)} + {ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

ψ = 〈.one〉, φ = ◦

The result of calling dataflow.passthrough

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

{�, ◦} one ~~> R {〈.one〉, (A)} + {ψ, φ} R ~~> JUMP {〈0〉 · ψ, φ}

ψ = 〈.one〉, φ = ◦

The result of calling dataflow.passthrough

should have a member named one

which the reference at a.py:6:16 resolves to.

+
The return value of dataflow.passthrough

has the same type as positional parameter 0.



The dataflow example

{�, ◦} one ~~> JUMP {〈0.one〉, (A)}

Positional parameter 0

should have a member named one
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Resolve the JUMP node.
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{�, ◦} one ~~> one {�, ◦}

The definition at a.py:4:5

is what the reference at

a.py:6:16 resolves to.
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One more for the road

MyMap.java

import java.util.HashMap;

class MyMap extends HashMap<String, String> {

int firstLength() {

return this.entrySet().iterator()

.next().getKey().length();

}

}
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B 7

↑ A ↑ a

↑ A2 ↑ __main__2 ↑ A3b•c

↓ A ↓ a

↓ A4 ↓ __main__4 ↓ A3b7c
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tree-sitter

stove.py

def bake():

pass

def broil():

pass

def saute():

pass

broil()



tree-sitter

(module [0, 0] - [10, 0]

(function_definition [0, 0] - [1, 8]

name: (identifier [0, 4] - [0, 8])

parameters: (parameters [0, 8] - [0, 10])

body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))

(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])

parameters: (parameters [3, 9] - [3, 11])

body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))

(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])

parameters: (parameters [6, 9] - [6, 11])

body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))

(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]

function: (identifier [9, 0] - [9, 5])

arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def

attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope -> @function.def

}

@name
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Extras

stove.rs

fn broil() {}

fn broil() {}

fn saute() {}

↑ stove↑ ::

↑ broil

↑ saute

↑ broil
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