
Incremental, zero-config Code Navigation
using stack graphs

Douglas Creager
@dcreager

Strange Loop
October 1, 2021 – St. Louis

https://dcreager.net/


Builds on the Scope Graphs framework
from Eelco Visser’s group at TU Delft.

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/


Builds on the Scope Graphs framework
from Eelco Visser’s group at TU Delft.

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/

Curry On Barcelona 2017

https://pl.ewi.tudelft.nl/research/projects/scope-graphs/
https://conf.researchr.org/details/curryon-2017/curryon-2017-papers/42/Scope-Graphs-A-Fresh-Look-at-Name-Binding-in-Programming-Languages


Code NavigationCode Navigation



Code Navigation

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

broil()



Code Navigation

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

broil()



Code Navigation

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

broil()



Why is this hard?Why is this hard?



Why is this hard?

stove.py
def broil():

pass

def broil():
pass

def saute():
pass

broil()



Why is this hard?

stove.py
def broil():

pass

def broil():
pass

def saute():
pass

broil()



Why is this hard?

stove.py
def broil():

pass

def broil():
pass

def saute():
pass

broil()



Why is this hard?

stove.rs
fn broil() {}

fn broil() {}

fn saute() {}

fn main() {
broil();

}

X



Why is this hard?

stove.rs
fn broil() {}

fn broil() {}

fn saute() {}

fn main() {
broil();

}

X



Why is this hard?

stove.rs
fn broil() {}

fn broil() {}

fn saute() {}

fn main() {
broil();

}

X



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import *

chef.py
from kitchen import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import *

chef.py
from kitchen import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import *

chef.py
from kitchen import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import *

def broil():
print("We're broiling!")
import stove
return stove.broil()

chef.py
from kitchen import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import *

def broil():
print("We're broiling!")
import stove
return stove.broil()

chef.py
from kitchen import broil

broil()



Why is this hard?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import *

def broil():
print("We're broiling!")
import stove
return stove.broil()

chef.py
from kitchen import broil

broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Why is this hard?

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



Oh is that all?



Zero configuration

We don’t want to have to ask the package
owner how to collect the data we need.

Or ask them to configure a job to produce that data.

It should Just Work.



SCALE

200 million repositories and counting

2 billion contributions
in the last 12 months

500 programming languages



When do we do the work?

Index Query



When do we do the work?

XIndex Query

This is an interactive feature, so we can’t do too much work at query time.

Goal: < 100ms



When do we do the work?

XIndex Query

Because of our scale, we can’t doo too much work at index time, either!
(Compute and storage costs are too high, work is wasted, etc.)



When do we do the work?

Index Query

We want to strike a balance.

Precalculate as much as we can.
Minimize the amount of duplicated work.

Defer some work until query time to make that happen.



Incremental processing

In a typical commit, a small fraction of files in the repo change.

We want to reuse results that we’ve
already calculated for unchanged files.

Structural sharing (like git itself) helps save storage.

Incremental processing also helps save compute.



Why is this hard?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.



Incremental resultsIncremental results



What would incremental results look like?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()

The reference at kitchen.py:3:1
refers to stove.broil in some other file

+
stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



What would incremental results look like?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()

The reference at kitchen.py:3:1
refers to stove.broil in some other file

+

stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



What would incremental results look like?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()

The reference at kitchen.py:3:1
refers to stove.broil in some other file

+
stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



What would incremental results look like?

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()

The reference at kitchen.py:3:1
refers to stove.broil in some other file

+
stove.broil is defined at stove.py:4:5

=
The reference at kitchen.py:3:1

is defined at stove.py:4:5



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

Invoking stove.Stove
gives you an instance of the Stove class.

The Stove class
has an instance member named broil
defined at stove.py:5:9.



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

Invoking stove.Stove

gives you an instance of the Stove class.

The Stove class
has an instance member named broil
defined at stove.py:5:9.



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

Invoking stove.Stove
gives you an instance of the Stove class.

The Stove class
has an instance member named broil
defined at stove.py:5:9.



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

Invoking stove.Stove
gives you an instance of the Stove class.

The Stove class

has an instance member named broil
defined at stove.py:5:9.



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

Invoking stove.Stove
gives you an instance of the Stove class.

The Stove class
has an instance member named broil

defined at stove.py:5:9.



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

Invoking stove.Stove
gives you an instance of the Stove class.

The Stove class
has an instance member named broil
defined at stove.py:5:9.



The more complex example

kitchen.py
from stove import *

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

kitchen.py
from stove import *

If you are looking for kitchen.[anything]

then you might find it at stove.[anything].



The more complex example

kitchen.py
from stove import *

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.



The more complex example

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()

If you can find what kitchen.Stove resolves to

and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.



The more complex example

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()

If you can find what kitchen.Stove resolves to and can call it

then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.



The more complex example

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil

which the reference at chef.py:4:7 resolves to.



The more complex example

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.



The more complex example

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.

+

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.

+

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

If you can find what stove.Stove resolves to and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.

+

Invoking stove.Stove
gives you an instance of the Stove class.



The more complex example

If you can find what stove.Stove resolves to and can call it
then the result should have a member named broil
which the reference at chef.py:4:7 resolves to.

+

Invoking stove.Stove
gives you an instance of the Stove class.



The more complex example

The Stove class
should have a member named broil
which the reference at chef.py:4:7 resolves to.

+

The Stove class
has an instance member named broil
defined at stove.py:5:9.



The more complex example

The Stove class
should have a member named broil
which the reference at chef.py:4:7 resolves to.

+

The Stove class
has an instance member named broil
defined at stove.py:5:9.



The more complex example

The definition at stove.py:5:9
is what the reference at chef.py:4:7 resolves to.



Stack graphs



Stack graphs

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

kitchen.py
from stove import broil

broil()



Stack graphs

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake



Stack graphs

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake



Stack graphs

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake



Stack graphs

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake



Stack graphs

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake



Stack graphs

kitchen.py
from stove import broil

broil()

kitchen .

broil

broil broil . stove



Stack graphs

kitchen.py
from stove import broil

broil()

kitchen .

broil

broil broil . stove



Stack graphs

kitchen.py
from stove import broil

broil()

kitchen .

broil

broil broil . stove



Stack graphs

kitchen.py
from stove import broil

broil()

kitchen .

broil

broil broil . stove



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨.broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨stove.broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨stove.broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨.broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨broil⟩



Stack graphs

stove.

saute

broil

bake

kitchen .

broil

broil broil . stove

Symbol stack: ⟨⟩



The more complex example

stove.py
class Stove(object):

def bake(self):
pass

def broil(self):
pass

def saute(self):
pass

kitchen.py
from stove import *

chef.py
from kitchen import Stove

stove = Stove()
stove.broil()



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨stove.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨stove.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨stove.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨kitchen.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨kitchen.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨stove.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨stove.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨Stove().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨().broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨.broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨broil⟩



The more complex example

stove.

Stove()IM.

saute

broil

bake

kitchen.

.stove

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

Symbol stack: ⟨⟩



Are we done?

Index Query

We’re still doing too much work at query time!

Can we shift more of the work to index time,
while still remaining incremental?



Partial pathsPartial paths



Partial paths

kitchen.py
from stove import broil

broil()
kitchen .

broil

broil broil . stove

⟨⟩ broil ᵿᵽᶯ ⟨stove.broil⟩

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

kitchen.py
from stove import broil

broil()
kitchen .

broil

broil broil . stove

⟨⟩ broil ᵿᵽᶯ ⟨stove.broil⟩

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

kitchen.py
from stove import broil

broil()
kitchen .

broil

broil broil . stove

⟨⟩ broil ᵿᵽᶯ ⟨stove.broil⟩

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

kitchen.py
from stove import broil

broil()
kitchen .

broil

broil broil . stove

⟨⟩ broil ᵿᵽᶯ ⟨stove.broil⟩

The reference at kitchen.py:3:1 refers to stove.broil in some other file



Partial paths

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake

⟨stove.broil⟩ ᵿᵽᶯ broil ⟨⟩

stove.broil is defined at stove.py:4:5.



Partial paths

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake

⟨stove.broil⟩ ᵿᵽᶯ broil ⟨⟩

stove.broil is defined at stove.py:4:5.



Partial paths

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake

⟨stove.broil⟩ ᵿᵽᶯ broil ⟨⟩

stove.broil is defined at stove.py:4:5.



Partial paths

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

stove.

saute

broil

bake

⟨stove.broil⟩ ᵿᵽᶯ broil ⟨⟩

stove.broil is defined at stove.py:4:5.



Concatenating partial paths

⟨⟩ broil ᵿᵽᶯ ⟨stove.broil⟩ + ⟨stove.broil⟩ ᵿᵽᶯ broil ⟨⟩

The reference at kitchen.py:3:1
refers to stove.broil in some other file + stove.broil is defined at stove.py:4:5



Concatenating partial paths

⟨⟩ broil ᵿᵽᶯ broil ⟨⟩

The reference at kitchen.py:3:1
is defined at stove.py:4:5.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

Invoking stove.Stove
gives you an instance of the Stove class.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

Invoking stove.Stove
gives you an instance of the Stove class.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

Invoking stove.Stove
gives you an instance of the Stove class.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

Invoking stove.Stove
gives you an instance of the Stove class.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨.broil⟩ IM ᵿᵽᶯ broil ⟨⟩

The Stove class
has an instance member named broil

defined at stove.py:5:9.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨.broil⟩ IM ᵿᵽᶯ broil ⟨⟩

The Stove class
has an instance member named broil

defined at stove.py:5:9.



The more complex example
stove.py

class Stove(object):
def bake(self):

pass

def broil(self):
pass

def saute(self):
pass

stove.

Stove()IM.

saute

broil

bake

⟨.broil⟩ IM ᵿᵽᶯ broil ⟨⟩

The Stove class
has an instance member named broil

defined at stove.py:5:9.



The more complex example

kitchen.py
from stove import * kitchen.

.stove

⟨kitchen.⟩ ᵿᵽᶯ ⟨stove.⟩

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

kitchen.py
from stove import * kitchen.

.stove

⟨kitchen.⟩ ᵿᵽᶯ ⟨stove.⟩

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

kitchen.py
from stove import * kitchen.

.stove

⟨kitchen.⟩ ᵿᵽᶯ ⟨stove.⟩

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example

kitchen.py
from stove import * kitchen.

.stove

⟨kitchen.⟩ ᵿᵽᶯ ⟨stove.⟩

If you are looking for kitchen.[anything]
then you might find it at stove.[anything].



The more complex example
chef.py

from kitchen import Stove

stove = Stove()
stove.broil()

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil

which the reference at chef.py:4:7 resolves to.



The more complex example
chef.py

from kitchen import Stove

stove = Stove()
stove.broil()

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil

which the reference at chef.py:4:7 resolves to.



The more complex example
chef.py

from kitchen import Stove

stove = Stove()
stove.broil()

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil

which the reference at chef.py:4:7 resolves to.



The more complex example
chef.py

from kitchen import Stove

stove = Stove()
stove.broil()

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil

which the reference at chef.py:4:7 resolves to.



The more complex example

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩

+ ⟨kitchen.⟩ ᵿᵽᶯ ⟨stove.⟩

If you can find what kitchen.Stove
resolves to and can call it, then the

result should have a member
named broil which the reference at

chef.py:4:7 resolves to.

+

If you are looking for
kitchen.[anything]
then you might find it at
stove.[anything].



The more complex example

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩ + ⟨kitchen.⟩ ᵿᵽᶯ ⟨stove.⟩

If you can find what kitchen.Stove
resolves to and can call it, then the

result should have a member
named broil which the reference at

chef.py:4:7 resolves to.

+

If you are looking for
kitchen.[anything]
then you might find it at
stove.[anything].



The more complex example

⟨⟩ broil ᵿᵽᶯ ⟨stove.Stove().broil⟩

+ ⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

If you can find what stove.Stove
resolves to and can call it, then the

result should have a member
named broil which the reference at

chef.py:4:7 resolves to.

+
Invoking stove.Stove gives you
an instance of the Stove class.



The more complex example

⟨⟩ broil ᵿᵽᶯ ⟨stove.Stove().broil⟩ + ⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

If you can find what stove.Stove
resolves to and can call it, then the

result should have a member
named broil which the reference at

chef.py:4:7 resolves to.

+
Invoking stove.Stove gives you
an instance of the Stove class.



The more complex example

⟨⟩ broil ᵿᵽᶯ IM ⟨.broil⟩

+ ⟨.broil⟩ IM ᵿᵽᶯ broil ⟨⟩

The Stove class
should have a member

named broil which the reference at
chef.py:4:7 resolves to.

+
The Stove class has an

instance member named broil
defined at stove.py:5:9.



The more complex example

⟨⟩ broil ᵿᵽᶯ IM ⟨.broil⟩ + ⟨.broil⟩ IM ᵿᵽᶯ broil ⟨⟩

The Stove class
should have a member

named broil which the reference at
chef.py:4:7 resolves to.

+
The Stove class has an

instance member named broil
defined at stove.py:5:9.



The more complex example

⟨⟩ broil ᵿᵽᶯ broil ⟨⟩

The definition at stove.py:5:9
is what the reference at
chef.py:4:7 resolves to.



Are we done?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.



Are we done?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.



Are we done?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.



Are we done?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.



Making stack graphsMaking stack graphs



tree-sittertree-sitter

https://tree-sitter.github.io/
https://tree-sitter.github.io/


tree-sitter

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

broil()



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name



github/stack-graphs
tree-sitter/tree-sitter
tree-sitter/tree-sitter-graph

https://github.com/github/stack-graphs
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter-graph


github/stack-graphs
tree-sitter/tree-sitter
tree-sitter/tree-sitter-graph

tree-sitter/tree-sitter-python
tree-sitter/tree-sitter-javascript
tree-sitter/tree-sitter-rust
tree-sitter/tree-sitter-ruby
elixir-lang/tree-sitter-elixir
r-lib/tree-sitter-r

...

https://github.com/github/stack-graphs
https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter-graph
https://github.com/tree-sitter/tree-sitter-python
https://github.com/tree-sitter/tree-sitter-javascript
https://github.com/tree-sitter/tree-sitter-rust
https://github.com/tree-sitter/tree-sitter-ruby
https://github.com/elixir-lang/tree-sitter-elixir
https://github.com/r-lib/tree-sitter-r


Index Query

Clone changed files
Parse using tree-sitter
Construct stack graph

Find partial paths

Load partial paths lazily
Stitch them together

p50: 5 sec
p99: 1-2 min

p50: 50ms
p99: 100ms



Index Query

Clone changed files
Parse using tree-sitter
Construct stack graph

Find partial paths

Load partial paths lazily
Stitch them together

p50: 5 sec
p99: 1-2 min

p50: 50ms
p99: 100ms



The really hard ones...

dataflow.py
def passthrough(x):

return x

class A:
one = 1

passthrough(A).one

MyMap.java
import java.util.HashMap;

class MyMap extends HashMap<String, String> {
int firstLength() {

return this.entrySet().iterator()
.next().getKey().length();

}
}



Picture credits
Slide 3 Ivan Radic, “Close-up of a compass graffiti on the ground”

CC-BY-2.0, https://flic.kr/p/2kGKMtM

Slide 5 Mustang Joe, “I swear...”
Public domain, https://flic.kr/p/VSLwD6

Slide 12 Marco Verch, “Close-up, a piece of yellow cake with red currant berries”
CC-BY-2.0, https://flic.kr/p/2jikJsQ

Slide 14 Joseph Gage, “Massive goose gaggle”
CC-BY-SA-2.0, https://flic.kr/p/2kJfaCt

Slide 21 Katja Schulz, “Inchworm”
CC-BY-2.0, https://flic.kr/p/PJMP4w

Slide 31 Marco Verch, “Stack of pancakes with berries on a plate”
CC-BY-2.0, https://flic.kr/p/2jYUh8M

Slide 39 Seattle Municipal Archives, “West Seattle Bridge under construction, circa 1983”
CC-BY-2.0, https://flic.kr/p/7jKWYi

Slide 53 Dave Lawler, “Good Morning”
CC-BY-2.0, https://flic.kr/p/WYowT7

Slide 54 Tony Guyton, “Treehouse Point”
CC-BY-2.0, https://flic.kr/p/rRrT5F

https://flic.kr/p/2kGKMtM
https://flic.kr/p/VSLwD6
https://flic.kr/p/2jikJsQ
https://flic.kr/p/2kJfaCt
https://flic.kr/p/PJMP4w
https://flic.kr/p/2jYUh8M
https://flic.kr/p/7jKWYi
https://flic.kr/p/WYowT7
https://flic.kr/p/rRrT5F


Picture credits
Slide 3 Ivan Radic, “Close-up of a compass graffiti on the ground”

CC-BY-2.0, https://flic.kr/p/2kGKMtM

Slide 5 Mustang Joe, “I swear...”
Public domain, https://flic.kr/p/VSLwD6

Slide 12 Marco Verch, “Close-up, a piece of yellow cake with red currant berries”
CC-BY-2.0, https://flic.kr/p/2jikJsQ

Slide 14 Joseph Gage, “Massive goose gaggle”
CC-BY-SA-2.0, https://flic.kr/p/2kJfaCt

Slide 21 Katja Schulz, “Inchworm”
CC-BY-2.0, https://flic.kr/p/PJMP4w

Slide 31 Marco Verch, “Stack of pancakes with berries on a plate”
CC-BY-2.0, https://flic.kr/p/2jYUh8M

Slide 39 Seattle Municipal Archives, “West Seattle Bridge under construction, circa 1983”
CC-BY-2.0, https://flic.kr/p/7jKWYi

Slide 53 Dave Lawler, “Good Morning”
CC-BY-2.0, https://flic.kr/p/WYowT7

Slide 54 Tony Guyton, “Treehouse Point”
CC-BY-2.0, https://flic.kr/p/rRrT5F

github/stack-graphs
tree-sitter/tree-sitter-graph

https://flic.kr/p/2kGKMtM
https://flic.kr/p/VSLwD6
https://flic.kr/p/2jikJsQ
https://flic.kr/p/2kJfaCt
https://flic.kr/p/PJMP4w
https://flic.kr/p/2jYUh8M
https://flic.kr/p/7jKWYi
https://flic.kr/p/WYowT7
https://flic.kr/p/rRrT5F
https://github.com/github/stack-graphs
https://github.com/tree-sitter/tree-sitter-graph


B 7

A a

A2 __main__2 A3

A a

A4 __main__4 A3 7


	Code Navigation
	Why is this hard?
	Incremental results
	Stack graphs
	Partial paths
	Producing stack graphs

