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Zero configuration

We don’t want to have to ask the package
owner how to collect the data we need.

Or ask them to configure a job to produce that data.

It should Just Work.



SCALE

200 million repositories and counting

2 billion contributions
in the last 12 months

500 programming languages
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XIndex Query

This is an interactive feature, so we can’t do too much work at query time.

Goal: < 100ms
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XIndex Query

Because of our scale, we can’t doo too much work at index time, either!
(Compute and storage costs are too high, work is wasted, etc.)



When do we do the work?

Index Query

We want to strike a balance.

Precalculate as much as we can.
Minimize the amount of duplicated work.

Defer some work until query time to make that happen.



Incremental processing

In a typical commit, a small fraction of files in the repo change.

We want to reuse results that we’ve
already calculated for unchanged files.

Structural sharing (like git itself) helps save storage.

Incremental processing also helps save compute.



Why is this hard?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.
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The more complex example

The definition at stove.py:5:9
is what the reference at chef.py:4:7 resolves to.
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Are we done?

Index Query

We’re still doing too much work at query time!

Can we shift more of the work to index time,
while still remaining incremental?



Partial pathsPartial paths
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The reference at kitchen.py:3:1 refers to stove.broil in some other file
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stove.broil is defined at stove.py:4:5.
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stove.py
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def saute(self):
pass

stove.

Stove()IM.

saute
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⟨stove.Stove()⟩ ᵿᵽᶯ IM ⟨⟩

Invoking stove.Stove
gives you an instance of the Stove class.
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If you are looking for kitchen.[anything]
then you might find it at stove.[anything].
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The more complex example
chef.py

from kitchen import Stove

stove = Stove()
stove.broil()

chef .

stove . broil

stove () Stove

Stove Stove . kitchen

⟨⟩ broil ᵿᵽᶯ ⟨kitchen.Stove().broil⟩

If you can find what kitchen.Stove resolves to and can call it
then the result should have a member named broil

which the reference at chef.py:4:7 resolves to.
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Are we done?

▶ Different languages have different name binding rules.
▶ Some of those rules can be quite complex.
▶ The result might depend on intermediate files.
▶ We don’t want to require manual per-repo configuration.
▶ We need incremental processing to handle our scale.
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tree-sitter

stove.py
def bake():

pass

def broil():
pass

def saute():
pass

broil()



tree-sitter

(module [0, 0] - [10, 0]
(function_definition [0, 0] - [1, 8]
name: (identifier [0, 4] - [0, 8])
parameters: (parameters [0, 8] - [0, 10])
body: (block [1, 4] - [1, 8]

(pass_statement [1, 4] - [1, 8])))
(function_definition [3, 0] - [4, 8]

name: (identifier [3, 4] - [3, 9])
parameters: (parameters [3, 9] - [3, 11])
body: (block [4, 4] - [4, 8]

(pass_statement [4, 4] - [4, 8])))
(function_definition [6, 0] - [7, 8]

name: (identifier [6, 4] - [6, 9])
parameters: (parameters [6, 9] - [6, 11])
body: (block [7, 4] - [7, 8]

(pass_statement [7, 4] - [7, 8])))
(expression_statement [9, 0] - [9, 7]

(call [9, 0] - [9, 7]
function: (identifier [9, 0] - [9, 5])
arguments: (argument_list [9, 5] - [9, 7]))))

(function_definition
name: (identifier) @name) @function

{
node @function.def
attr (@function.def) kind = "definition"
attr (@function.def) symbol = @name

edge @function.containing_scope ᳲᶯ @function.def
}

@name
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Clone changed files
Parse using tree-sitter
Construct stack graph

Find partial paths

Load partial paths lazily
Stitch them together
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p99: 100ms
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The really hard ones...

dataflow.py
def passthrough(x):

return x

class A:
one = 1

passthrough(A).one

MyMap.java
import java.util.HashMap;

class MyMap extends HashMap<String, String> {
int firstLength() {

return this.entrySet().iterator()
.next().getKey().length();

}
}
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